A Bike Sharing System Simulator

Alberto Fernández, Sandra Timón, Carlos Ruiz, Tao Cumplido, Holger Billhardt, Jürgen Dunkel SCIA at PAAMS 2018. Toledo, 20-22 June, 2018

(Station-based) Bike-sharing systems

(Station-based) Bike-sharing systems

Architecture

Users

- Appear at "entry points"
 - Probability distribution
- Behaviour:
 - Extensible set of user types:
 - Uninformed, Informed, Obedient, Informed-R, Obedien-R, Commuter, Tourist, Distance/Resources, Most available resources, ...
 - Configuration parameters

Universidad Rey Juan Carlos

Experiment Configuration

User generation

•••	
u	Universidad Rey Juan Carlos

	Start *
Select Entry Point and User Type	1000
	End *
ntry Point Type *	2000
POISSON	Radius
ser Type *	111,93358003434021
USER_OBEDIENT	Total Users
= required fields	User Type
Submit	Parameters

Entry Point parameters

Distribution

Lambda *

10

alle^OCalle de Alfon

Position

Latitude *

Longitude *

Time Range

40,42244640529165

-3,7073707580566406

Experiment Configurati

Global configuration

Universidad Rey Juan Carlos General Configuration

Entry Points

Stations

Total Simulation Time *
3600
Debug Mode
Reservation Time •
600
Random Seed
Bounding Box
North West
Latitude •
40,42807935816139
Longitude •
-3,7153571509601444
South East
Latitude •
40,41384156305805
Longitude •
-3,6937368088135556
Map *

../map/madrid.osm

Visualisation

Data analysis

• Demand satisfaction (DS)

DS = SH / N

Return satisfaction(RS)

RS = SR / SH

• Hire efficiency (HE)

HE = SH / (SH+FH)

- Return efficiency(RE) RE = SR / (SH+FR)
- Empty time per station

N: # of users

SH: # of Succesful Hires

FH: # of Failed Hires

SR: # of Succesful Returns

Evaluation

3 km² 20 stations 20 slots 10 bikes

Recommendation: # bikes / # slots

entre for

Conclusions

- Station-based simulator:
 - Available at: https://github.com/stimonm/Bike3S
- Decoupled modules:
 - User generation, Simulation, Visualisation, Analysis
- Future lines
 - Improving simulator
 - Extendable Recommendation systems
 - GUI for Users and Recommendation configuration
 - Incentive-based balancing strategies
 - User models

Universidad Rey Juan Carlos

Bike Sharing System Simulator

Create configuration

Load configuration

Simulate configuration

View Simulation

Analyse Simulation

Thanks!

Η

